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Abstract
In this paper, we study interior estimates for solutions to linearizedMonge–Ampère equations
in divergence form with drift terms and the right-hand side containing the divergence of a
bounded vector field. Equations of this type appear in the study of semigeostrophic equations
in meteorology and the solvability of singular Abreu equations in the calculus of variations
with a convexity constraint.We prove an interior Harnack inequality andHölder estimates for
solutions to equations of this type in two dimensions, and under an integrability assumption on
the Hessian matrix of the Monge–Ampère potential in higher dimensions. Our results extend
those of Le (Graduate studies in mathematics, vol 240, American Mathematical Society,
2024) to equations with drift terms.

Mathematics Subject Classification 35J15 · 35J70 · 35J75

1 Introduction and statements of themain results

In this paper, we are interested in the interior estimates for solutions u : � → R to linearized
Monge–Ampère equations of the form

− div(�Du + uB) + b · Du = f − divF (1.1)

in a bounded domain � ⊂ R
n , n ≥ 2, where b, B, F: � → R

n are bounded vector fields,
f ∈ Ln , and

� = (�i j )1≤i, j≤n = (det D2ϕ)(D2ϕ)−1 (1.2)

is the cofactor matrix of the Hessian matrix

D2ϕ = (Di jϕ)1≤i, j≤n =
(

∂2ϕ

∂xi∂x j

)
1≤i, j≤n

.
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Here ϕ is a C3 convex Monge–Ampère potential satisfying

0 < λ ≤ det D2ϕ ≤ � in �. (1.3)

As the cofactor matrix � is divergence-free, that is, Di�
i j = 0 for all j , the left-hand

side of (1.1) can also be written in nondivergence form and we have

−�i j Di j u + (b − B) · Du − (divB)u = f − divF.

We will focus on the divergence form and the case when F �= 0, and obtain interior estimates
for u using its integral information.

1.1 LinearizedMonge–Ampère equations

LinearizedMonge–Ampère equations arise in several contexts such as affinemaximal surface
equation in affine geometry [50–52], Kähler metrics of constant scalar curvature in complex
geometry [9, 10, 13, 14], solvability of Abreu type equations in complex geometry and in
the calculus of variations with a convexity constraint [1, 7, 8, 23, 28, 29, 35, 54, 55], and
semigeostrophic equations in meteorology [2, 15, 26, 36].

For a strictly convex function ϕ ∈ C2(�) satisfying (1.3), the cofactor matrix� is positive
definite, but we cannot expect structural bounds on its eigenvalues. Hence, the linearized
Monge–Ampère operator is an elliptic operator that can be degenerate and singular.

Starting with the seminal result of Caffarelli-Gutiérrez [6] on the homogeneous equation

�i j Di j u = div(�Du) = 0,

linearizedMonge–Ampère equations have been studied by many authors [17, 18, 25, 30, 32–
34, 37–39, 45, 47]. The term divF in (1.1) appears in the study of semigeostrophic equations
in meteorology. Specifically, we have equations of the form

div(�Du) = divF. (1.4)

See [36, equation (13)], [26, equation (1.5)] and [31, equation (15.51)].
For equations of this type, Loeper [36] proved the Hölder estimate of solutions using

integral information of u under the assumption that det D2ϕ is close to a constant. Roughly
speaking, Loeper needed this condition to apply the results of Murty-Stampacchia [43] and
Trudinger [49]; see Sect. 1.3 for more information. Le [26] proved the same result when
n = 2 with just the assumption in (1.3). Le [31, Theorem 15.6] also proved the Hölder
estimate when n ≥ 3 under an integrability assumption on the Hessian matrix D2ϕ, that is,
D2ϕ ∈ Ls for s > n(n − 1)/2. This equation was also studied by Wang [53], where the
Hölder estimate is proved under an integrability assumption on (D2ϕ)1/2F; more precisely,
when (D2ϕ)1/2F ∈ Lq , q > n. In Wang [53], the upper bound for the Hölder norm contains
the L∞ norm of the solution u, while in Le [31], the L p norm (p > 1) is used.

The main difference between (1.1) and (1.4) is the existence of drift terms − div(uB) and
b · Du. When F = 0, equations of the form (1.1) with nonzero drift terms (b,B �= 0) have
been studied by Maldonado [37, 40, 41] and Le [27, 30]. These appear in the solvability of
singular Abreu equations in higher dimensions in complex geometry and in the calculus of
variations with a convexity constraint [23, equations (2.2) and (2.5)].
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1.2 Themain results

In this paper, we will consider equations of type (1.1) that have both the drift terms, and also
divF, in dimension two and under an integrability assumption on D2ϕ in higher dimensions.
Our main results are the following theorems on interior Harnack inequality and Hölder
estimates. They extend the result of Le [31] to equations with drift terms.

Our first result is the following Harnack inequality.

Theorem 1.1 (Harnack inequality) Let ϕ ∈ C3(�) be a convex function satisfying (1.3).
Suppose thatF,b,B ∈ W 1,n

loc (�;Rn)∩L∞
loc(�;Rn), f ∈ Ln

loc(�), n/2 < r ≤ n, and divB ≤
0. Assume that Sϕ(x0, 2h) � �, where Sϕ(x0, ·) is the section defined in Definition 2.1. Let
u ∈ W 2,n(Sϕ(x0, h)) be a nonnegative solution to (1.1) in Sϕ(x0, h) and let t ≤ h/2. Further
assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�)+1 > n

2 , where ε∗ is the exponent in the interior W 2,1+ε estimate
for the Monge–Ampère equation in Theorem 2.7.

Then, there are positive constants C and γ such that

sup
Sϕ(x0,t)

u ≤ C

(
(‖F‖L∞(Sϕ(x0,h)) + ‖ f ‖Lr (Sϕ(x0,h)))t

γ + inf
Sϕ(x0,t)

u

)
.

Here the constants C and γ are given by

γ = γ (n, λ,�, r) > 0, and

C = C(n, λ,�, r , ε∗, ‖b‖L∞(Sϕ(x0,h)) , ‖B‖L∞(Sϕ(x0,h)) ,

‖divB‖Ln(Sϕ(x0,h)) , h, diam(Sϕ(x0, 2h))).

We will prove Theorem 1.1 in Sect. 4.
From the Harnack inequality, we have the following interior Hölder estimates.

Corollary 1.2 (Hölder estimates with L∞ norms) Let ϕ ∈ C3(�) be a convex function sat-
isfying (1.3). Assume that F,B,b ∈ L∞

loc(�;Rn) ∩ W 1,n
loc (�;Rn), f ∈ Ln

loc(�), divB ≤ 0,

n/2 < r ≤ n, and Sϕ(x0, 4h0) � �. Let u ∈ W 2,n
loc (Sϕ(x0, 4h0)) be a solution to (1.1) in

Sϕ(x0, 4h0). Further assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�) + 1 > n

2 , where ε∗ is the exponent in the interior W 2,1+ε estimate
for the Monge–Ampère equation in Theorem 2.7.

Then, there are positive constants C and γ such that for all x, y ∈ Sϕ(x0, h0), we have

|u(x) − u(y)| ≤ C
(
‖F‖L∞(Sϕ(x0,2h0)) + ‖ f ‖Lr (Sϕ(x0,2h0)) + ‖u‖L∞(Sϕ(x0,h0))

)
|x − y|γ .

(1.5)

Hereγ dependsonn,λ,�, ε∗,‖(b,B)‖L∞(Sϕ(x0,2h0)),‖divB‖Ln(Sϕ(x0,2h0)),diam(Sϕ(x0, 4h0)),
and h0, and C depends on ‖(b,B)‖L∞(Sϕ(x0,2h0)), ‖divB‖Ln(Sϕ(x0,2h0)), diam(Sϕ(x0, 4h0)),
n, λ, �, r , ε∗, and h0.

We will prove Corollary 1.2 in Sect. 6.
With stronger assumptions on the integrability of theHessianmatrix D2ϕ in higher dimen-

sions,we can obtain the following interiorHölder estimate,where the L∞ normof the solution
u in Corollary 1.2 is replaced by its L2 norm.
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Theorem 1.3 (Hölder estimateswith L2 norm) Letϕ ∈ C3(�) be a convex function satisfying
(1.3). Assume that F,B,b ∈ L∞

loc(�;Rn) ∩ W 1,n
loc (�;Rn), f ∈ Ln

loc(�), divB ≤ 0, n/2 <

r ≤ n, and Sϕ(x0, 4h0) � �. Let u ∈ W 2,n
loc (Sϕ(x0, 4h0)) be a solution to (1.1) in Sϕ(x0, 4h0).

Further assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�) + 1 >

n(n−1)
2 , where ε∗ is the exponent in the interior W 2,1+ε

estimate for the Monge–Ampère equation in Theorem 2.7.

Then, there arepositive constantsC andγ , whereγ dependsonn,λ,�, ε∗,diam(Sϕ(x0, 4h0)),
‖(b,B)‖L∞(Sϕ(x0,2h0)), and h0, and C depends on n, λ, �, r , ε∗, ‖(b,B)‖L∞(Sϕ(x0,2h0)), h0,
and diam(Sϕ(x0, 4h0)), such that for all x, y ∈ Sϕ(x0, h0), we have

|u(x) − u(y)| ≤ C
(
‖F‖L∞(Sϕ(x0,2h0)) + ‖ f ‖Lr (Sϕ(x0,2h0)) + ‖u‖L2(Sϕ(x0,2h0))

)
|x − y|γ .

(1.6)

We will prove Theorem 1.3 in Sect. 6.

Remark 1.4 In Theorem 1.3, we use the L2 norm of the solution u in the estimate (in fact,
any L p norm for p > 0 can be used); in Corollary 1.2, the L∞ norm of u is used in the
estimate. The improvement in Theorem 1.3 comes at the cost of having to assume stronger
integrability of D2ϕ when n ≥ 3, namely, 1 + ε∗ >

n(n−1)
2 . This is because we need this

condition in the proof of the interior estimate in Lemma 5.1. It would be interesting to see if
the condition 1 + ε∗ >

n(n−1)
2 can be relaxed in Theorem 1.3.

Remark 1.5 Note that, by Caffarelli [4] (also see [31, Theorem 6.13]), for any p > 1 and any
convex functionϕ satisfying (1.3),we have D2ϕ ∈ L p

loc(�), provided that�/λ−1 ≤ e−C(n)p

for some large constant C(n) > 1.

Remark 1.6 In our theorems, we require ϕ to be C3 in the domain. However, our estimates
do not depend on the regularity of ϕ but only on the constants λ, �, and n. The functions
F, b, B are assumed to be in L∞

loc(�;Rn) ∩ W 1,n
loc (�;Rn) and f to be in Ln

loc(�), but the
estimates depend only on the quantities stated.

1.3 Related results for equations in divergence form

Divergence form equations

− div(aDu + uB) + b · Du + cu = f − divF in � ⊂ R
n (1.7)

have been studied in the casewhen the symmetric coefficientmatrixa = a(x) is not uniformly
elliptic, but instead satisfies

ρ(x)In ≤ a(x) ≤ μ(x)In

for nonnegative functions ρ andμ, where In is the n×n identity matrix. Murty-Stampacchia
[43] and Trudinger [49] proved L∞ and Hölder estimates for solutions to equations of the
form (1.7) with integrability assumptions on μ and ρ−1. Specifically, it is assumed that
μ ∈ L p and ρ−1 ∈ Lq , where 1

p + 1
q < 2

n . These extend the classical results of De Giorgi
[11], Nash [44], and Moser [42] for uniformly elliptic equations, when ρ and μ are positive
constants.

Bella-Schäffner [3] extended the above results in the case of equations of the form
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− div(aDu) = 0

in � ⊂ R
n , under the assumption that 1

p + 1
q < 2

n−1 . This result is essentially sharp, as
Franchi-Serapioni-Serra Cassano [16, Theorem 2] proved that a counterexample exists if
n ≥ 4 and 1

p + 1
q > 2

n−1 .

In the case when the matrix a = � is the cofactor matrix of the Hessian matrix D2ϕ,
where ϕ satisfies (1.3), we have

a = (det D2ϕ)(D2ϕ)−1 ≥ det D2ϕ∥∥D2ϕ
∥∥ In .

As det D2ϕ ≥ λ and D2ϕ ∈ L1+ε∗
by the W 2,1+ε estimate for Monge–Ampère equations

(see Theorem 2.7), ρ−1 ∈ L1+ε∗
. Furthermore, ρn−1μ is bounded by (1.3), and thus μ ∈

L(1+ε∗)/(n−1). Therefore, we get

1

p
+ 1

q
= 1

1 + ε∗ + n − 1

1 + ε∗ = n

1 + ε∗ .

Note that, with only the assumption that ε∗ > 0, this is smaller than 2
n−1 only when n = 2.

When n ≥ 3, the assumption 1+ε∗ > n(n−1)/2 in Theorem 1.3 and in Le [31] corresponds
to n

1+ε∗ < 2
n−1 . Compared to the results of Bella-Schäffner, these cover the equations with

nonzero right-hand side (especially the case when F �= 0), with the assumption that the
matrix a = (det D2ϕ)(D2ϕ)−1.

1.4 Methods of the proofs

We briefly discuss the differences in the proofs of the results in this paper, the results of Le
[26, 31], and the results of Wang [53].

The proof of interior Hölder estimates in Le [26, 31] used the fine properties of the
Green’s function for the linearized Monge–Ampère operator [24, 25]. Other tools used in
the proof are De Philippis-Figalli-Savin and Schmidt’s W 2,1+ε estimate [12, 46] in the case
n = 2, and the Monge–Ampère Sobolev inequality. The W 2,1+ε estimate is replaced by
an integrability assumption for D2ϕ when n ≥ 3. The results for the Green’s function for
the linearized Monge–Ampère operator with drift terms are not available, so we take an
alternative approach in our proofs.

Wang [53] uses the De Giorgi iteration technique, in addition to the Monge–Ampère
Sobolev inequality, in the proof of interior Hölder estimates. We will use the Moser iteration
techniques similar to the ones in Gilbarg-Trudinger [20, Chapter 8] and Trudinger [49], and
the Monge–Ampère Sobolev inequality in our proofs.

The rest of this paper is organized as follows. In Sect. 2, we present definitions and prior
results used in the proofs of the results. In Sect. 3, we establish global L∞ estimates for
solutions to (1.1). In Sect. 4, we prove the interior Harnack inequality in Theorem 1.1. In
Sect. 5, we establish interior estimates for solutions to (1.1). Finally, in Sect. 6, we prove the
Hölder estimates in Corollary 1.2 and Theorem 1.3.

2 Preliminaries

In this section, we introduce some notations, definitions, and background results on the
Monge–Ampère equations and the linearized Monge–Ampère equations that will be used in
this paper.
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Notation

We will use the following notations throughout the paper.

• Br (x) := {y ∈ R
n : |y − x | < r},

• Br := Br (0),
• u± := max{±u, 0},
• In := n × n identity matrix.
• diam(E) := diameter of a set E .
• |�| := the Lebesgue measure of a Lebesgue measurable set � ⊂ R

n .

Unless otherwise stated, our convex domains are assumed to have nonempty interior.

Definition 2.1 (Sections) Let ϕ be a C1 convex function in�. Then the section of ϕ centered
at x ∈ � with height h > 0 is defined as

Sϕ(x, h) = {y ∈ � : ϕ(y) < ϕ(x) + Dϕ(x) · (y − x) + h}.
Theorem 2.2 (John’s lemma [22]) Let � ⊂ R

n be a nonempty bounded convex domain.
Then, there is an affine transformation T : Rn → R

n such that B1 ⊂ T−1� ⊂ Bn.

Definition 2.3 (Normalized convex sets) An open convex set K ⊂ R
n is called normalized

if B1 ⊂ K ⊂ Bn .

We will use the following Monge–Ampère Sobolev inequality. It was proved by Tian-
Wang [48, Theroem 3.1] when n ≥ 3, and by Le [26, Proposition 2.6] when n = 2; see also
[31, Theorem 14.15].

Theorem 2.4 (Monge–Ampère Sobolev inequality) Let ϕ be a C2 convex function satisfying
(1.3), and define � as in (1.2). Suppose Sϕ(x0, 2h) � �, and Sϕ(x0, h) is a normalized
section. Then for any u ∈ C∞

c (Sϕ(x0, h)),

‖u‖L p(Sϕ(x0,h)) ≤ C

[∫
Sϕ(x0,h)

�Du · Du dx

]1/2

,

where

1. p ∈ (2,∞) and C = C(p, λ,�) if n = 2, and
2. p = 2n

n−2 and C = C(n, λ,�) if n ≥ 3.

Theorem 2.5 (Caffarelli’s interior C1,α estimate [5]) Let ϕ be a strictly convex solution to
the Monge–Ampère equation det D2ϕ = f in a convex domain � ⊂ R

n, where λ ≤ f ≤ �

for positive constants λ and �. If Sϕ(x, h) � � is a normalized section, then for all y, z ∈
Sϕ(x, h/2), we have

|Dϕ(y) − Dϕ(z)| ≤ C |y − z|α ,
where

C = C(n, λ,�) > 0 and α = α(n, λ,�) > 0. (2.1)

This C1,α estimate implies that sections contain balls with the same center.
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Corollary 2.6 With the same assumptions as in Theorem 2.5, if t ≤ h/2 we have

Bct1/(1+α) (x) ⊂ Sϕ(x, t),

where α is defined in (2.1) and c = c(n, λ,�) > 0.

We will also use the interior W 2,1+ε estimate of De Philippis-Figalli-Savin [12] and
Schmidt [46] for the Monge–Ampère equation. We will use the following formulation for
compactly supported sections (see [31, Corollary 6.26]).

Theorem 2.7 (Interior W 2,1+ε estimate) Let � be a convex domain in Rn. Let ϕ: � → R be
a continuous convex solution to the Monge–Ampère equation

det D2ϕ = f in �, 0 < λ ≤ f ≤ �.

Suppose Sϕ(x0, h) is a normalized section, and Sϕ(x0, 2h) � �. Then, for ε = ε∗(n, λ,�) >

0 and C = C(n, λ,�) > 0, we have∥∥D2ϕ
∥∥
L1+ε(Sϕ(x0,h))

≤ C.

We have the following volume estimates for sections (see [31, Lemma 5.6(i)]).

Lemma 2.8 (Volume estimate for sections) Suppose ϕ is a C1 convex solution to λ ≤
det D2ϕ ≤ � for positive constants λ and � in � ⊂ R

n. If Sϕ(x, h) � �, then

c(�, n)hn/2 ≤ |Sϕ(x, h)| ≤ C(λ, n)hn/2

for positive constants c and C.

Wewill also use the followingHarnack inequality for linearizedMonge–Ampère equations
with drift from Le [27, Theorem 1.1].

Theorem 2.9 (Harnack inequality for linearized Monge–Ampère equations) Let � ⊂ R
n be

a bounded convex domain. Assume that ϕ satisfies (1.3), and define � = (�i j )1≤i, j≤n as in

(1.2). Suppose that v ≥ 0 is a W 2,n
loc (�) solution of

�i j Di jv + b · Dv + cv = f (2.2)

in a section S := Sϕ(x0, 2h) � �, where h ≤ h0 for a positive, fixed h0, f ∈ Ln
loc(�),

c ∈ Ln
loc(�), and b ∈ L∞

loc(�;Rn). Then

sup
Sϕ(x0,h)

v ≤ C

(
inf

Sϕ(x0,h)
v + h1/2 ‖ f ‖Ln(S)

)
, (2.3)

where C is a positive constant depending on n, λ, �, h0, ‖b‖L∞(S), and ‖c‖Ln(S).

Definition 2.10 (Subsolutions to equation (1.1) in a domain S) Let � ⊂ R
n be a bounded

domain, and S be a domain contained in �. Suppose F,B,b ∈ L∞
loc(�;Rn) ∩ W 1,n

loc (�;Rn)

and f ∈ Ln
loc(�). We say that u ∈ W 1,2(S) is a (weak) subsolution to (1.1) if for all

v ∈ W 1,2
0 (S) with v ≥ 0 in S, we have

∫
S
�Du · Dv dx +

∫
S
uB · Dv dx +

∫
S
(b · Du)v dx ≤

∫
S
F · Dv dx +

∫
S
f v dx .

(2.4)
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3 Global estimates

In this section, we prove global estimates for solutions to equation (1.1) with zero boundary
data on sections in Proposition 3.5. These estimates will be used to prove the Harnack
inequality, Theorem 1.1, in Sect. 4. The following is a brief outline of the steps leading to the
proof of Proposition 3.5.

We begin with Lemma 3.1, which provides an estimate for subsolutions u that are nonpos-
itive on the boundary of normalized sections. By defining suitable test functions and using
Moser iteration, we derive an estimate for the L∞ norm of u+ in terms of its L2 norm. In
Lemma 3.2, we obtain an L2 bound for w of the form log C

C−u+ . Next, in Lemma 3.3 we
show that w is a subsolution to a linearized Monge–Ampère equation of the form in (1.1).
This gives global estimate for u+ independent of the L2 norm of u. Applying Lemma 3.3 to
u and −u gives Lemma 3.4, which provides global estimates in normalized sections. Finally,
rescaling Lemma 3.4 gives us Proposition 3.5.

We now proceed with the proof of the following lemma.

Lemma 3.1 Let ϕ ∈ C3(�) be a convex function satisfying (1.3). Suppose F,B,b ∈
L∞
loc(�;Rn) ∩ W 1,n

loc (�;Rn), f ∈ Ln
loc(�), and n/2 < r ≤ n. Suppose S = Sϕ(x, t) is

a normalized section, and Sϕ(x, 2t) � �. Suppose u ∈ W 1,2(S) ∩ C(S) is a subsolution to
(1.1) in S satisfying u ≤ 0 on ∂S. Assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�) + 1 > n

2 , where ε∗ is as in Theorem 2.7.

Then,

sup
S

u+ ≤ C
(
‖F‖L∞(S) + ‖ f ‖Lr (S) + ∥∥u+∥∥

L2(S)

)
, (3.1)

where

C = C(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S) ,
∥∥D2ϕ

∥∥
L1+ε∗ (S)

).

Proof We define the test function v as in Gilbarg-Trudinger [20, Section 8.5]. Set

k = ‖F‖L∞(S) + ‖ f ‖Lr (S) ,

and for β ≥ 1 and N ≥ k, define H ∈ C1([k,∞)) by

H(z) =
{
zβ − kβ if k ≤ z ≤ N ,

βNβ−1(z − N ) + (Nβ − kβ) if N < z.

Let w = u+ + k ≥ k, and define

v = G(w) :=
∫ w

k
|H ′(s)|2 ds ≥ 0.

Then, using v ∈ W 1,2
0 (S) as a test function in (1.1), we get∫

S
�Du · Dv dx +

∫
S
uB · Dv dx +

∫
S
(b · Du)v dx ≤

∫
S
F · Dv dx +

∫
S
f v dx .

(3.2)

Note that
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1. Dv = G ′(w)Dw = H ′(w)2Dw,
2. v and Dv are supported on {u ≥ 0}, and on the set {u > 0} = {v > 0}, we have

Dw = Du = Du+, and
3. H ′ is increasing on (k,∞), hence G ′ is also increasing on (k,∞). Thus,

G(w) =
∫ w

k
G ′(s) ds ≤ wG ′(w).

Now we estimate the terms in (3.2) separately. Note that as ϕ is convex and det D2ϕ > 0
by (1.3), D2ϕ is positive definite. Moreover, the largest eigenvalue of D2ϕ is bounded by

ϕ. Therefore, we have, in the sense of symmetric matrices,

� = (det D2ϕ)(D2ϕ)−1 ≥ det D2ϕ


ϕ
In .

Hence for any η ∈ R
n , we have, by (1.3),

�η · η ≥
(
det D2ϕ


ϕ

)
|η|2 ≥

(
λ


ϕ

)
|η|2. (3.3)

Using the Cauchy-Schwarz inequality and (3.3), we get

−
∫
S
(b · Du)v dx ≤

∫
S
G(w)|b · Dw| dx ≤

∫
S
wG ′(w)|b · Dw| dx

≤
∫
S

(
G ′(w)�Dw · Dw

)1/2 (
w2G ′(w)


ϕ

λ
|b|2

)1/2

dx

≤ 1

4

∫
S
G ′(w)�Dw · Dw dx +

∫
S
w2G ′(w)


ϕ

λ
|b|2 dx .

(3.4)

Similarly, recalling that Dv is supported on {u ≥ 0}, we have

−
∫
S
uB · Dv dx = −

∫
S
G ′(w)uB · Dw dx ≤

∫
S
G ′(w)w|B||Dw| dx

≤
∫
S

(
G ′(w)�Dw · Dw

)1/2 (
w2G ′(w)


ϕ

λ
|B|2

)1/2

dx

≤ 1

4

∫
S
G ′(w)�Dw · Dw dx +

∫
S
w2G ′(w)


ϕ

λ
|B|2 dx .

(3.5)

By the same reason, we have

∫
S
F · Dv dx =

∫
S
G ′(w)F · Dw dx

≤
∫
S

(
G ′(w)�Dw · Dw

)1/2 (
G ′(w)


ϕ

λ
|F|2

)1/2

dx

≤ 1

4

∫
S
G ′(w)�Dw · Dw dx +

∫
S
G ′(w)


ϕ

λ
|F|2 dx

≤ 1

4

∫
S
G ′(w)�Dw · Dw dx +

∫
S
w2G ′(w)


ϕ

λ
dx ,

(3.6)

123



  123 Page 10 of 32 Y. H. Kim

where we used w ≥ ‖F‖L∞(S), and because w ≥ k,
∫
S
f v dx ≤

∫
S
| f |G(w) dx ≤

∫
S
| f |wG ′(w) dx

≤
∫
S

| f |
k

w2G ′(w) dx .
(3.7)

Note that ∫
S
�Du · Dv dx =

∫
S
G ′(w)�Dw · Dw.

Adding (3.4)–(3.7) and invoking (3.2), we obtain∫
S
G ′(w)�Dw · Dw dx

≤ 3

4

∫
S
G ′(w)�Dw · Dw dx +

∫
S
w2G ′(w)

[

ϕ

λ
(1 + |b|2 + |B|2) + | f |

k

]
dx .

Hence ∫
S
G ′(w)�Dw · Dw dx ≤ 4

∫
S
w2G ′(w)h dx , (3.8)

where

h = 
ϕ

λ
(1 + |b|2 + |B|2) + | f |

k
.

Before moving to the next step, we estimate h. As S is normalized, |B1| ≤ |S| ≤ |Bn |.
Therefore, for

q := min{1 + ε∗, r} >
n

2

we have, by the Hölder inequality,

‖h‖Lq (S) ≤ 1 + ‖b‖2L∞(S) + ‖B‖2L∞(S)

λ
‖
ϕ‖Lq (S) + ‖ f ‖Lq (S)

k

≤ 1 + ‖b‖2L∞(S) + ‖B‖2L∞(S)

λ
‖
ϕ‖L1+ε∗ (S) |S| 1+ε∗−q

q(1+ε∗) + ‖ f ‖Lr (S)

k
|S| r−q

qr

≤ 1 + ‖b‖2L∞(S) + ‖B‖2L∞(S)

λ
‖
ϕ‖L1+ε∗ (S) |Bn |

1+ε∗−q
q(1+ε∗) + |Bn |

r−q
qr . (3.9)

Then, for

q̂ := 2q

q − 1
, (3.10)

we have, from the Hölder inequality∫
S
w2G ′(w)h dx =

∫
S
(wH ′(w))2h dx

≤ ‖h‖Lq (S)

∥∥(wH ′(w))2
∥∥
L

q
q−1 (S)

= ‖h‖Lq (S)

∥∥wH ′(w)
∥∥2
Lq̂ (S)

.

(3.11)
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As u ≤ 0 on ∂S, H(w) = 0 on ∂S and theMonge–Ampère Sobolev inequality, Theorem 2.4,
implies ∫

S
G ′(w)�Dw · Dw dx =

∫
S
H ′(w)2�Dw · Dw dx

=
∫
S
�DH(w) · DH(w) dx

≥ c1(q, n, λ,�) ‖H(w)‖2Ln̂(S)
,

(3.12)

where

n̂ =
{

2n
n−2 if n ≥ 3,

2q̂ if n = 2.
(3.13)

Note that as q > n/2, we have n̂ > q̂. From (3.8), (3.11), and (3.12), we have

‖H(w)‖Ln̂(S) ≤ C2(q, n, λ,�) ‖h‖1/2Lq (S)

∥∥wH ′(w)
∥∥
Lq̂ (S)

. (3.14)

Letting N → ∞, the terms in (3.14) converge to

‖H(w)‖Ln̂(S) → ∥∥wβ − kβ
∥∥
Ln̂(S)

,∥∥wH ′(w)
∥∥
Lq̂ (S)

→ ∥∥βwβ
∥∥
Lq̂ (S)

.
(3.15)

We also have ∥∥kβ
∥∥
Ln̂(S)

= kβ |S|1/̂n = |S|1/̂n−1/q̂
∥∥kβ

∥∥
Lq̂ (S)

≤ |B1|1/̂n−1/q̂
∥∥kβ

∥∥
Lq̂ (S)

≤ |B1|1/̂n−1/q̂
∥∥wβ

∥∥
Lq̂ (S)

.

(3.16)

Because β ≥ 1, from (3.14)–(3.16) and (3.9), we conclude that∥∥wβ
∥∥
Ln̂(S)

≤ C̃β
∥∥wβ

∥∥
Lq̂ (S)

, (3.17)

where

C̃ = C2(n, λ,�, q) ‖h‖1/2Lq (S) + |B1|1/̂n−1/q̂

≤ C̃(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S) ,
∥∥D2ϕ

∥∥
L1+ε∗ (S)

).

Note that C̃ is independent of β.
We define

χ := n̂

q̂
> 1,

and rewrite (3.17) as

‖w‖Lβχ q̂ (S) ≤ (C̃β)1/β ‖w‖Lβq̂ (S) . (3.18)

Setting β = χm ≥ 1 (for integer m ≥ 0) in (3.18), we get

‖w‖
Lχm+1 q̂ (S)

≤ C̃χ−m
χmχ−m ‖w‖Lχmq̂ (S) . (3.19)

Iterating (3.19) yields

‖w‖L∞(S) ≤ C̃
∑

m≥0 χ−m
χ

∑
m≥0 mχ−m ‖w‖Lq̂ (S) . (3.20)
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Because w ≥ u+ ≥ 0 and

‖w‖Lq̂ (S) ≤ ‖w‖1−2/q̂
L∞(S)

‖w‖2/q̂
L2(S)

,

(3.20) gives

sup
S

u+ ≤ ‖w‖L∞(S) ≤ C ‖w‖L2(S) ≤ C(k + ∥∥u+∥∥
L2(S)

)

= C
(
‖F‖L∞(S) + ‖ f ‖Lr (S) + ∥∥u+∥∥

L2(S)

)
,

where

C = C(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S) ,
∥∥D2ϕ

∥∥
L1+ε∗ (S)

).

This completes the proof. 
�
Note that the L2 norm of u+ appears on the right-hand side of (3.1). We will use a trick

in Gilbarg-Trudinger [20, Section 8.5] to eliminate this term. We first prove the following
lemma.

Lemma 3.2 Let ϕ ∈ C3(�) be a convex function satisfying (1.3). Suppose F,B,b ∈
L∞
loc(�;Rn) ∩ W 1,n

loc (�;Rn), f ∈ Ln
loc(�), n/2 < r ≤ n, and divB ≤ 0. Suppose

S = Sϕ(x, t) is a normalized section and Sϕ(x, 2t) � �. Suppose u ∈ W 1,2(S) ∩ C(S)

is a subsolution to (1.1) in S satisfying u ≤ 0 on ∂S. Assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�) + 1 > n

2 , where ε∗ is as in Theorem 2.7.

Then,

w = log
M + k

M + k − u+ where M = sup
S

u+ and k = ‖ f ‖Lr (S) + ‖F‖L∞(S) , (3.21)

satisfies

‖w‖L2(S) ≤ C(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S) ,
∥∥D2ϕ

∥∥
L1+ε∗ (S)

). (3.22)

Proof Set

v := u+

M + k − u+ .

Then v ≥ 0, and v ∈ W 1,2
0 (S) ∩ C(S). Because u is a subsolution to (1.1), we get∫

S
�Du · Dv dx +

∫
S
uB · Dv dx +

∫
S
(b · Du)v dx ≤

∫
S
F · Dv dx +

∫
S
f v dx .

As divB ≤ 0 and uv ≥ 0,∫
S
uB · Dv dx =

∫
S
B · D(uv) dx −

∫
S
vB · Du dx ≥ −

∫
S
vB · Du dx

and therefore, we have∫
S
�Du · Dv dx +

∫
S
((b − B) · Du)v dx ≤

∫
S
F · Dv dx +

∫
S
f v dx . (3.23)

Because

Dv = M + k

(M + k − u+)2
Du+, (3.24)
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the left-hand side of (3.23) becomes∫
S
�Du · Dv dx +

∫
S
((b − B) · Du)v dx

=
∫
S

M + k

(M + k − u+)2
�Du+ · Du+ dx +

∫
S

u+(b − B) · Du+

M + k − u+ dx .

(3.25)

We may also use (3.24) to substitute Dv in the right-hand side of (3.23) to obtain
∫
S
F · Dv dx +

∫
S
f v dx =

∫
S

(M + k)F · Du+

(M + k − u+)2
dx +

∫
S

f u+

M + k − u+ dx . (3.26)

Putting (3.23), (3.25), and (3.26) together, and dividing both sides by M + k, we find
∫
S

�Du+ · Du+

(M + k − u+)2
dx ≤

∫
S

F · Du+

(M + k − u+)2
dx +

∫
S

f u+ + u+(B − b) · Du+

(M + k)(M + k − u+)
dx .

(3.27)

Nowwe estimate the terms in (3.27) separately. First, from theCauchy-Schwarz inequality
and (3.3), we have

∫
S

F · Du+

(M + k − u+)2
dx ≤

∫
S

(�Du+ · Du+)1/2(λ−1
ϕ|F|2)1/2
(M + k − u+)2

dx

≤ 1

4

∫
S

�Du+ · Du+

(M + k − u+)2
dx +

∫
S

λ−1
ϕ|F|2
(M + k − u+)2

dx

≤ 1

4

∫
S

�Du+ · Du+

(M + k − u+)2
dx +

∫
S
λ−1
ϕ dx

(3.28)

as M + k − u+ ≥ k ≥ ‖F‖L∞(S). Next, using k ≥ ‖ f ‖Lr (S) and the Hölder inequality, we
estimate∫

S

f u+

(M + k − u+)(M + k)
dx ≤

∫
S

| f |
k

× 1 dx ≤
∥∥∥∥ f

k

∥∥∥∥
Lr (S)

‖1‖Lr/(r−1)(S)

≤ |S| r−1
r ≤ |Bn | r−1

r .

(3.29)

Finally, from Cauchy-Schwarz inequality and (3.3), we estimate
∫
S

u+(B − b) · Du+

(M + k)(M + k − u+)
dx ≤

∫
S
|b − B|

∣∣∣∣ Du+

M + k − u+

∣∣∣∣ dx

≤
∫
S

{
�Du+ · Du+

(M + k − u+)2

}1/2 {

ϕ

λ
|b − B|2

}1/2

dx

≤ 1

4

∫
S

�Du+ · Du+

(M + k − u+)2
dx +

∫
S


ϕ

λ
|b − B|2 dx .

(3.30)

Combining (3.27) with (3.28)–(3.30) yields

1

2

∫
S

�Du+ · Du+

(M + k − u+)2
dx ≤ |Bn | r−1

r + 1 + (‖b‖L∞(S) + ‖B‖L∞(S)

)2
λ

∫
S

ϕ dx

≤ C0(n, r , ε∗, λ,�, ‖b‖L∞(S) , ‖B‖L∞(S) ,
∥∥D2ϕ

∥∥
L1+ε∗ (S)

).

(3.31)
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As u ≤ 0 on ∂S, w = 0 on ∂S. Also, we have

Dw = Du+

M + k − u+ . (3.32)

Therefore, the left-hand side of (3.31) can be estimated using the Hölder inequality and the
Monge–Amp̀ere Sobolev inequality in Theorem 2.4:

1

2

∫
S

�Du+ · Du+

(M + k − u+)2
dx = 1

2

∫
S
�Dw · Dw dx

≥
⎧⎨
⎩
c1 ‖w‖2

L
2n
n−2 (S)

≥ c1|S|−2/n ‖w‖2
L2(S)

≥ c1|Bn |−2/n ‖w‖2
L2(S)

if n ≥ 3,

c1 ‖w‖2
L4(S)

≥ c1|Bn |−1/2 ‖w‖2
L2(S)

if n = 2,

(3.33)

where c1 = c1(n, λ,�). The conclusion of the lemma follows from (3.31) and (3.33). 
�

Now we obtain the following global L∞ estimate, independent of the L2 norm of the
solution u, by showing that w in (3.21) is a subsolution to an equation of the same form as
(1.1).

Lemma 3.3 Let ϕ ∈ C3(�) be a convex function satisfying (1.3). Suppose F,B,b ∈
L∞
loc(�;Rn) ∩ W 1,n

loc (�;Rn), f ∈ Ln
loc(�), n/2 < r ≤ n, and divB ≤ 0. Suppose

S = Sϕ(x, t) is a normalized section and Sϕ(x, 2t) � �. Suppose u ∈ W 1,2(S) ∩ C(S)

is a subsolution to (1.1) in S satisfying u ≤ 0 on ∂S. Assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�) + 1 > n

2 , where ε∗ is from Theorem 2.7.

Then,

sup
S

u+ ≤ C
(‖F‖L∞(S) + ‖ f ‖Lr (S)

)
, (3.34)

where

C = C(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S) ,
∥∥D2ϕ

∥∥
L1+ε∗ (S)

).

Proof Let w ∈ W 1,2
0 (S) be as in (3.21). Then, using (3.32), we get

−B · Dw = − B · Du+

M + k − u+

= − div(Bu+) + u+ divB
M + k − u+ ≤ − div(Bu+)

M + k − u+

(3.35)

as divB ≤ 0. We have in the weak sense,

− div(�Dw) = − div(�Du+)

M + k − u+ − �Du+ · Du+

(M + k − u+)2
. (3.36)

From (3.32), (3.35), and (3.36), we get

− div(�Dw) + (b − B) · Dw ≤ − div(�Du+ + u+B) + b · Du+

M + k − u+ − �Du+ · Du+

(M + k − u+)2
.
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Combining this with (1.1), we get

− div(�Dw) + (b − B) · Dw

≤ f − divF
M + k − u+ − �Du+ · Du+

(M + k − u+)2

= − div

(
F

M + k − u+

)
+ f

M + k − u+ +
(−�Du+ · Du+ + F · Du+

(M + k − u+)2

)
in {u ≥ 0}.

From (3.3) and the Cauchy-Schwarz inequality, we have in S

−�Du+ · Du+ + F · Du+ ≤ − λ


ϕ
|Du+|2 + F · Du+

≤ 
ϕ|F|2
4λ

≤ 
ϕ(M + k − u+)2

4λ
,

which implies

− div(�Dw) + (b − B) · Dw ≤ − div

(
F

M + k − u+

)
+ f

M + k − u+ + 
ϕ

4λ
in {u ≥ 0}.

As w = 0 outside {u ≥ 0}, w is a subsolution to

− div(�Dw) + b̃ · Dw ≤ − div F̃ + f̃ in S, (3.37)

where

b̃ = b − B,

F̃ = F
M + k − u+ χ{u≥0}, and

f̃ =
(

f

M + k − u+ + 
ϕ

4λ

)
χ{u≥0}.

(3.38)

Recalling that k = ‖F‖L∞(S) + ‖ f ‖Lr (S) and M = supS u
+ ≥ u+, we obtain

∥∥̃b∥∥
L∞(S)

≤ ‖b‖L∞(S) + ‖B‖L∞(S) , and
∥∥F̃∥∥

L∞(S)
≤ 1. (3.39)

For r̃ := min{r , 1 + ε∗} > n/2, using the Hölder inequality and the volume estimate in
Lemma 2.8, we have

∥∥ f̃
∥∥
Lr̃ (S)

≤ ‖ f ‖Lr̃ (S)

k
+ ‖
ϕ‖Lr̃ (S)

4λ

≤ C1(n, r , ε∗)
(‖ f ‖Lr (S)

k
+

∥∥D2ϕ
∥∥
L1+ε∗ (S)

4λ

)

≤ C1(n, r , ε∗)
(
1 +

∥∥D2ϕ
∥∥
L1+ε∗ (S)

4λ

)

≤ C2

(
n, r , ε∗, λ,

∥∥D2ϕ
∥∥
L1+ε∗ (S)

)
.

(3.40)
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Combining (3.37)–(3.40) and applying Lemmas 3.1 and 3.2, we get

sup
S

w ≤ C3

(∥∥F̃∥∥
L∞(S)

+ ‖ f ‖Lr̃ (S) + ‖w‖L2(S)

)

≤ C4(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S) ,
∥∥D2ϕ

∥∥
L1+ε∗ (S)

).
(3.41)

Recalling that

w = log
M + k

M + k − u+

and M = supS u
+, we have

sup
S

w = log
M + k

k
. (3.42)

Therefore, as k = ‖F‖L∞(S) + ‖ f ‖Lr (S), the conclusion of the lemma follows from (3.41)
and (3.42). 
�

By applying Lemma 3.3 to u and −u, we obtain the following estimate.

Lemma 3.4 Let ϕ ∈ C3(�) be a convex function satisfying (1.3). Suppose F,B,b ∈
L∞
loc(�;Rn) ∩ W 1,n

loc (�;Rn), f ∈ Ln
loc(�), n/2 < r ≤ n, and divB ≤ 0. Suppose

S = Sϕ(x, t) is a normalized section and Sϕ(x, 2t) � �. Suppose u ∈ W 1,2(S) ∩ C(S)

is a solution to (1.1) in S satisfying u = 0 on ∂S. Assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�) + 1 > n

2 , where ε∗ is from Theorem 2.7.

Then,

‖u‖L∞(S) ≤ C
(‖F‖L∞(S) + ‖ f ‖Lr (S)

)
(3.43)

where

C = C(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S) ,
∥∥D2ϕ

∥∥
L1+ε∗ (S)

).

Now, we rescale (1.1) and apply Lemma 3.4 to obtain the following global estimate.

Proposition 3.5 (Global L∞ estimate in normalized section) Let ϕ ∈ C3(�) be a convex
function satisfying (1.3). Suppose F,B,b ∈ L∞

loc(�;Rn) ∩ W 1,n
loc (�;Rn), f ∈ Ln

loc(�),
n/2 < r ≤ n, and divB ≤ 0. Suppose Sϕ(x0, 2h0) is a normalized section contained in
�, and h ≤ h0. Assume that u ∈ W 1,2(S) ∩ C(S) is a solution to (1.1) in S = Sϕ(x0, h)

satisfying u = 0 on ∂S. Further assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�) + 1 > n

2 , where ε∗ is from Theorem 2.7.

Then,

‖u‖L∞(S) ≤ C
(‖F‖L∞(S) + ‖ f ‖Lr (S)

)
hγ , (3.44)

where

C = C(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S)), and

γ = γ (n, λ,�, r) > 0.
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Proof We use the rescaling in Le ([30, pp.20-22], [26, Section 3.2]). By John’s lemma, there
is an affine transformation T x = Ahx +bh such that B1 ⊂ T−1(Sϕ(x0, h)) ⊂ Bn . We define
the rescaled functions

ϕ̃(x) := (det Ah)
−2/nϕ(T x),

ũ(x) := u(T x),

F̃(x) := (det Ah)
2/n A−1

h F(T x),

b̃(x) := (det Ah)
2/n A−1

h b(T x),

B̃(x) := (det Ah)
2/n A−1

h B(T x), and

f̃ (x) := (det Ah)
2/n f (T x)

(3.45)

on

S̃ := T−1(Sϕ(x0, h)) = Sϕ̃ (y0, (det Ah)
−2/nh), (3.46)

where y0 = T−1x0. Then, the rescaled functions satisfy the equation

− div(�̃Dũ + ũB̃) + b̃ · Dũ = f̃ − div F̃ in S̃. (3.47)

To apply Lemma 3.4 to ũ, we estimate the rescaled functions. First, note that

det D2ϕ̃(x) = (det D2ϕ)(T x) in S̃,

so that

λ ≤ det D2ϕ̃ ≤ � in S̃.

Furthermore, as B1 ⊂ S̃ ⊂ Bn , we have from Lemma 2.8,

c(n, λ,�)hn/2 ≤ det Ah ≤ C(n, λ,�)hn/2. (3.48)

From Corollary 2.6, we get∥∥∥A−1
h

∥∥∥ ≤ n

ch
1

1+α

≤ C(n, λ,�)h− 1
1+α . (3.49)

Now, from (3.45), (3.48), and (3.49), we get
∥∥̃b∥∥

L∞(S̃)
≤ (Chn/2)2/nCh− 1

1+α ‖b‖L∞(S) ≤ C(n, λ,�)h
α

1+α ‖b‖L∞(S) . (3.50)

Similarly, we also obtain∥∥B̃∥∥
L∞(S̃)

≤ C(n, λ,�)h
α

1+α ‖B‖L∞(S) , and∥∥F̃∥∥
L∞(S̃)

≤ C(n, λ,�)h
α

1+α ‖F‖L∞(S) .
(3.51)

Finally, we get

∥∥ f̃
∥∥
Lr (S̃)

=
(∫

S̃
(det Ah)

2r/n f r (T x) dx

)1/r

=
(∫

S
(det Ah)

(2r/n)−1 f r (y) dy

)1/r

≤
(∫

S
(Chn/2)(2r/n)−1 f r (y) dy

)1/r

= C(n, λ,�)2/n−1/r h1−n/2r ‖ f ‖Lr (S) .

(3.52)
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As ∂ S̃ = T−1(∂S), ũ = 0 on ∂ S̃. Therefore, we may apply Lemma 3.4 to ũ and combine it
with (3.51) and (3.52) to get

‖u‖L∞(S) = ‖ũ‖L∞(S̃)

≤ C̃
(∥∥F̃∥∥

L∞(S̃)
+ ∥∥ f̃

∥∥
Lr (S̃)

)

≤ C̃
(
C(n, λ,�)h

α
1+α ‖F‖L∞(S) + C(n, λ,�, r)h1−n/2r ‖ f ‖Lr (S)

)
,

(3.53)

where

C̃ = C(n, λ,�, r , ε∗,
∥∥̃b∥∥

L∞(S̃)
,
∥∥B̃∥∥

L∞(S̃)
,
∥∥D2ϕ̃

∥∥
L1+ε∗ (S̃)

). (3.54)

As Sϕ(x0, h) is contained in a normalized section, we have

h ≤ C(n, λ,�). (3.55)

Therefore, we have

C̃ ≤ C(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S)). (3.56)

Furthermore, the L∞ norms of b̃, B̃ are under control by (3.50) and (3.51). Finally, by the
W 2,1+ε estimate in Theorem 2.7, we have∥∥D2ϕ̃

∥∥
L1+ε∗ (S̃)

≤ C(n, λ,�).

Combining (3.53), (3.54), and (3.55), we have

‖u‖L∞(S) ≤ C̃C(n, λ,�, r , α)
(‖F‖L∞(S) + ‖ f ‖Lr (S)

)
hγ (n,r ,α), (3.57)

where

γ = min

{
1 − n

2r
,

α

1 + α

}
.

As α = α(n, λ,�), the conclusion of the lemma follows from (3.56) and (3.57). 
�

4 Harnack inequality

In this section, we use the global estimate in Proposition 3.5 to prove the Harnack inequality,
Theorem 1.1. We begin by expressing an arbitrary solution of (1.1) as the sum of solutions
of a homogeneous equation and an inhomogeneous equation with zero boundary data. The
inhomogeneous part can be bounded using Proposition 3.5, while the homogeneous part can
be bounded using the Harnack inequality in Theorem 2.9. Combining these estimates yields
the Harnack inequality in normalized sections, Proposition 4.1. Rescaling Proposition 4.1
then gives the desired Harnack inequality in Theorem 1.1.

We will first prove the following proposition.

Proposition 4.1 (Harnack inequality in normalized section) Let ϕ ∈ C3(�) be a convex
function satisfying (1.3). Suppose that F,B,b ∈ L∞

loc(�;Rn) ∩ W 1,n
loc (�;Rn), f ∈ Ln

loc(�),
divB ≤ 0, and n/2 < r ≤ n. Suppose Sϕ(x, h0) is a normalized section contained in�, and
h ≤ h0/2. Assume that u ∈ W 2,n(Sϕ(x, h)) is a nonnegative solution to (1.1) in Sϕ(x, h).
Further assume that

1. either n = 2, or
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2. n ≥ 3 and ε∗(n, λ,�) + 1 > n
2 , where ε∗ is from Theorem 2.7.

Then,

sup
Sϕ(x,h/2)

u ≤ C

(
(‖F‖L∞(Sϕ(x,h)) + ‖ f ‖Lr (Sϕ(x,h)))h

γ + inf
Sϕ(x,h/2)

u

)
,

where

γ = γ (n, λ,�, r) > 0, and

C = C(n, λ,�, r , ε∗, ‖b‖L∞(Sϕ(x,h)) , ‖divB‖Ln(Sϕ(x,h)) , ‖B‖L∞(Sϕ(x,h))) > 0.

Proof By [20, Theorem 9.15], we can find a solution u0 ∈ W 2,n(S) to{
− div(�Du0 + u0B) + b · Du0 = f − divF in S := Sϕ(x, h),

u0 = 0 on ∂S.

Then v = u − u0 satisfies v ≥ 0 on ∂S, and is a solution to

− div(�Dv + vB) + b · Dv = 0 in S.

Observing that the equation above can be written as

−�i j Di jv + (b − B) · Dv − (divB)v = 0

and divB ≤ 0, we have v ≥ 0 in S by the maximum principle [20, Theorem 9.1]. As
Sϕ(x, 2h) is contained in a normalized section, Sϕ(x, 2h) ⊂ Bn and h ≤ C(n, λ,�) by
Lemma 2.8. Therefore, we can apply the Harnack inequality in Theorem 2.9 to get

sup
Sϕ(x,h/2)

v ≤ C1 inf
Sϕ(x,h/2)

v, (4.1)

where

C1 = C1(n, λ,�, ‖b‖L∞(S) , ‖B‖L∞(S) , ‖divB‖Ln(S)).

By applying the global estimate in Proposition 3.5 to u0, we obtain

sup
S

|u0| ≤ C2(‖F‖L∞(S) + ‖ f ‖Lr (S))h
γ , (4.2)

where

C2 = C2(n, λ,�, r , ε∗, ‖b‖L∞(S) , ‖B‖L∞(S)), and

γ = γ (n, λ,�, r) > 0.

As v = u − u0, combining (4.1) and (4.2) completes the proof. 
�
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 We prove the theorem by using the rescaling scheme in the proof of
Proposition 3.5. Using John’s lemma, we find an affine transformation

T x = Ahx + bh

such that

T B1 ⊂ S := Sϕ(x0, h) ⊂ T Bn , (4.3)

Using the transformation T , we define the rescaled functions as in (3.45), (3.46).
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We start by estimating the matrix Ah . First, from (4.3) and Lemma 2.8, we obtain the
following bounds on det Ah :

| det Ah | = |T B1|
|B1| ≤ |Sϕ(x0, h)|

|B1| ≤ C1(n, λ,�)hn/2 =: C3(n, λ,�, h), and

| det Ah | = |T Bn |
|Bn | ≥ |Sϕ(x0, h)|

|Bn | ≥ c1(n, λ,�)hn/2 =: c4(n, λ,�, h).
(4.4)

We also have (see [31, (5.6)])∥∥∥A−1
h

∥∥∥ ≤ C2 = C̃(n, λ,�, diam(Sϕ(x0, 2h)))h−n/2. (4.5)

Recall that from (3.46),

S̃ := T−1(Sϕ(x0, h)) = Sϕ̃ (y0, (det Ah)
−2/nh).

We now estimate the rescaled functions. From (3.45), (4.5) and (4.4), we have
∥∥̃b∥∥

L∞(S̃)
≤ C2/n

3 C2 ‖b‖L∞(S) ,∥∥B̃∥∥
L∞(S̃)

≤ C2/n
3 C2 ‖B‖L∞(S) ,∥∥F̃∥∥

L∞(S̃)
≤ C2/n

3 C2 ‖F‖L∞(S) , and

∥∥ f̃
∥∥
Lr (S̃)

=
(∫

S
(det Ah)

(2r/n)−1 f r (y) dy

)1/r

≤
(∫

S
C (2r/n)−1
3 f r (y) dy

)1/r

= C2/n−1/r
3 ‖ f ‖Lr (S) .

(4.6)

Also, as

div B̃(x) = (det Ah)
2/n divB(T x) ≤ 0, (4.7)

we have

∥∥div B̃∥∥
Ln(S̃)

=
(∫

S̃
(det Ah)

2[(divB)(T x)]n dx
)1/n

=
(∫

S
(det Ah)[(divB)(y)]n dy

)1/n

≤
(∫

S
C3[(divB)(y)]n dy

)1/n

= C1/n
3 ‖divB‖Ln(S) .

(4.8)

For t ≤ h/2, setting

t̃ = (det Ah)
−2/nt ≤ (det Ah)

−2/nh/2

gives

Sϕ̃ (y0, t̃) = T−1Sϕ(x0, t). (4.9)
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Then, ũ is a solution to the rescaled equation (3.47) in Sϕ̃ (y0, 2̃t). Applying Proposition 4.1
to ũ, we get

sup
Sϕ̃ (y0 ,̃t)

ũ ≤ C5

{(∥∥F̃∥∥
L∞(S̃)

+ ∥∥ f̃
∥∥
Lr (S̃)

)
t̃γ + inf

Sϕ̃ (y0 ,̃t)
ũ

}
. (4.10)

Here, the constants C5 and γ come from Proposition 4.1:

γ = γ (n, λ,�, r) > 0, and

C5 = C5(n, λ,�, r , ε∗,
∥∥̃b∥∥

L∞(S̃)
,
∥∥div B̃∥∥

Ln(S̃)
,
∥∥B̃∥∥

L∞(S̃)
) > 0.

Furthermore, the norms
∥∥̃b∥∥

L∞(S̃)
,
∥∥div B̃∥∥

Ln(S̃)
,
∥∥B̃∥∥

L∞(S̃)
,
∥∥F̃∥∥

L∞(S̃)
, and

∥∥ f̃
∥∥
Lr (S̃)

of the
rescaled functions are under control by (4.6) and (4.8). Finally, t̃ is controlled by t through

t̃ ≤ c−2/n
4 t . (4.11)

Therefore, putting (4.6), (4.8), (4.9) and (4.11) together, we obtain the conclusion of the
theorem from (4.10). 
�

5 Interior estimates

In this section, we prove the interior estimate for solutions to (1.1) in Lemma 5.2. This
estimate will be used in the proofs of the Hölder estimates in Corollary 1.2 and Theorem 1.3
in Sect. 6.

We begin by defining suitable test functions and then applyingMoser iteration. This yields
an estimate in Lemma 5.1 for the L∞ norm of solutions u to (1.1), involving its Lq∗

norm in
a larger section, where q∗ is a finite number. Next, using a dilation argument from Le [31,
Theorem 15.4] and rescaling, we obtain the interior estimate in Lemma 5.2.

We will first prove the following lemma.

Lemma 5.1 (Interior estimate in normalized section) Let ϕ ∈ C3(�) be a convex function
satisfying (1.3). Suppose F,b,B ∈ W 1,n

loc (�;Rn) ∩ L∞
loc(�;Rn), f ∈ Ln

loc(�), and n/2 <

r ≤ n. Assume that Sϕ(x0, 2t) � �, and Sϕ(x0, t) is a normalized section. Assume that
u ∈ W 1,2(Sϕ(x0, t)) is a nonnegative solution to (1.1) in Sϕ(x0, t). Further assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�) + 1 >

n(n−1)
2 where ε∗ is from Theorem 2.7.

Then,

sup
Sϕ(x0,t/2)

u ≤ C(‖u‖Lq∗(Sϕ(x0,t)) + ‖F‖L∞(Sϕ(x0,t)) + ‖ f ‖Lr (Sϕ(x0,t))),

where

C = C(n, λ,�, r , ε∗, ‖b‖L∞(Sϕ(x0,t)) , ‖B‖L∞(Sϕ(x0,t))), and q∗ = q∗(ε∗, n, r).

Proof We argue as in Le [31, pp.515–517]. Let u = u + k, where

k = ‖F‖L∞(Sϕ(x0,t)) + ‖ f ‖Lr (Sϕ(x0,t)) .

For η ∈ C1
c (Sϕ(x0, t)) to be determined later andβ ≥ 0, we use v = η2uβ+1 ∈ C1

c (Sϕ(x0, t))
as a test function in (1.1) and extend it to be zero outside Sϕ(x0, t) to obtain∫

�

�Du · Dv dx +
∫

�

uB · Dv dx +
∫

�

vb · Du dx =
∫

�

F · Dv dx +
∫

�

f v. (5.1)
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Because

Dv = (β + 1)η2uβDu + 2ηuβ+1Dη and Du = Du,

the terms in (5.1) become∫
�

�Du · Dv dx = (β + 1)
∫

�

η2uβ�Du · Du dx + 2
∫

�

ηuβ+1�Du · Dη dx ,
∫

�

uB · Dv dx = (β + 1)
∫

�

η2uuβB · Du dx + 2
∫

�

ηuuβ+1B · Dη dx ,
∫

�

vb · Du dx =
∫

�

η2uβ+1b · Du dx ,
∫

�

F · Dv dx = (β + 1)
∫

�

η2uβF · Du dx + 2
∫

�

ηuβ+1F · Dη dx , and
∫

�

f v dx =
∫

�

η2uβ+1 f dx .

(5.2)

We now estimate these terms. By the Cauchy-Schwarz inequality, we have

−2
∫

�

ηuβ+1�Du · Dη dx ≤ 1

8

∫
�

η2uβ�Du · Du dx + 8
∫

�

uβ+2�Dη · Dη dx .

(5.3)

By the Cauchy-Schwarz inequality and (3.3), we get

− (β + 1)
∫

�

η2uuβB · Du dx

≤ (β + 1)
∫

�

η2uβ+1|B||Du| dx

≤ β + 1

8

∫
�

η2uβ�Du · Du dx + 2(β + 1)
∫

�

η2uβ+2 
ϕ

λ
|B|2 dx .

(5.4)

Similarly,

−2
∫

�

ηuuβ+1B · Dη dx ≤ 2
∫

�

ηuβ+2|B||Dη| dx

≤
∫

�

uβ+2�Dη · Dη dx +
∫

�

η2uβ+2 
ϕ

λ
|B|2 dx ,

(5.5)

and

−
∫

�

η2uβ+1b · Du dx ≤ 1

8

∫
�

η2uβ�Du · Du dx + 2
∫

�

η2uβ+2 
ϕ

λ
|b|2 dx . (5.6)

As in (5.3) and using u ≥ |F| in Sϕ(x0, t), we have

(β + 1)
∫

�

η2uβF · Du dx

≤ (β + 1)
∫

�

(
η2uβ�Du · Du

)1/2 (
η2uβ 
ϕ

λ
|F|2

)1/2

dx

≤ β + 1

8

∫
�

η2uβ�Du · Du dx + 2(β + 1)
∫

�

η2uβ 
ϕ

λ
|F|2 dx

≤ β + 1

8

∫
�

η2uβ�Du · Du dx + 2(β + 1)
∫

�

η2uβ+2 
ϕ

λ
dx ,

(5.7)
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and

2
∫

�

ηuβ+1F · Dη dx ≤ 2
∫

�

(
uβ+2�Dη · Dη

)1/2 (
η2uβ 
ϕ

λ
|F|2

)1/2

dx

≤
∫

�

uβ+2�Dη · Dη dx +
∫

�

η2uβ 
ϕ

λ
|F|2 dx

≤
∫

�

uβ+2�Dη · Dη dx +
∫

�

η2uβ+2 
ϕ

λ
dx .

(5.8)

Finally,
∫

�

η2uβ+1 f dx ≤
∫

�

η2uβ+2 | f |
k

dx . (5.9)

Now we put (5.1)–(5.9) together. We use (5.2) to substitute the integrals in (5.1); then, we
apply the estimates in (5.3)–(5.9). As β ≥ 0 and each integral appearing on the right-hand
sides of (5.3)–(5.9) is nonnegative, we get

1

2
(
β

2
+ 1)

∫
�

η2uβ�Du · Du dx

≤ 10

(∫
�

uβ+2�Dη · Dη dx + β + 2

2

∫
�

η2uβ+2
{


ϕ

λ
(1 + |b|2 + |B|2) + | f |

k

}
dx

)
.

(5.10)

Because

D(uβ/2+1η) =
(

β

2
+ 1

)
uβ/2ηDu + uβ/2+1Dη,

we have

�D(uβ/2+1η) · D(uβ/2+1η) ≤ 2

[(
β

2
+ 1

)2

uβη2�Du · Du + uβ+2�Dη · Dη

]
.

Therefore, (5.10) implies that

∫
�

�D(uβ/2+1η) · D(uβ/2+1η) dx ≤ 128

(
β

2
+ 1

)2 [∫
�

uβ+2�Dη · Dη dx

+
∫

�

η2uβ+2
{


ϕ

λ
(1 + |b|2 + |B|2) + | f |

k

}
dx

]
.

(5.11)

Letting

Sa := Sϕ(x0, a),

we have, from the Alexandrov Maximum Principle [31, Theorem 3.12] (also see [31,
(15.16)]),

dist(Sr , ∂SR) ≥ c(n, λ,�)(R − r)n for 0 < r < R ≤ t .

Hence, we may choose η supported on SR so that 0 ≤ η ≤ 1, η ≡ 1 in Sr , and

|Dη| ≤ C0(n, λ,�)(R − r)−n . (5.12)
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We set

q = min

{
1 + ε∗

n − 1
, r

}
>

n

2
,

and define q̂, n̂ using (3.10) and (3.13). That is,

q̂ := 2q

q − 1
, and n̂ :=

{
2n
n−2 if n ≥ 3,

2q̂ if n = 2.

Then, by the Monge–Ampère Sobolev inequality, Theorem 2.4, we have∫
�

�D(uβ/2+1η) · D(uβ/2+1η) dx =
∫
SR

�D(uβ/2+1η) · D(uβ/2+1η) dx

≥ c1(n, λ,�, q̂)
∥∥uβ/2+1η

∥∥2
Ln̂(SR)

≥ c1
∥∥uβ/2+1

∥∥2
Ln̂(Sr )

.

(5.13)

Because D2ϕ > 0, all of its eigenvalues are smaller than 
ϕ. Hence,

� = (det D2ϕ)(D2ϕ)−1 ≤ (
ϕ)n−1 In .

Therefore, we have, from (5.12),∫
�

uβ+2�Dη · Dη dx ≤
∫
SR

uβ+2(
ϕ)n−1|Dη|2 dx

≤ C2
0 (R − r)−2n

∫
SR

uβ+2(
ϕ)n−1 dx .
(5.14)

We also have∫
�

η2uβ+2
{


ϕ

λ
(1 + |b|2 + |B|2) + | f |

k

}
dx

≤
∫
SR

uβ+2
{


ϕ

λ
(1 + |b|2 + |B|2) + | f |

k

}
dx

≤ C2(n, λ,�)(R − r)−2n
∫
SR

uβ+2
{


ϕ

λ
(1 + |b|2 + |B|2) + | f |

k

}
dx .

(5.15)

If we define

h := 
ϕ

λ
(1 + |b|2 + |B|2) + | f |

k
+ (
ϕ)n−1,

then h ∈ Lq(St ). From (5.14), (5.15), and the Hölder inequality, the right-hand side of (5.11)
is bounded by

RHS (5.11) ≤ 128(C2
0 + C2)(

β

2
+ 1)2(R − r)−2n

∫
SR

uβ+2h dx

≤ C3(n, λ,�)(
β

2
+ 1)2(R − r)−2n

∥∥uβ/2+1
∥∥2
Lq̂ (SR)

‖h‖Lq (St ) .

(5.16)

Combining (5.11), (5.13), and (5.16) yields

∥∥uβ/2+1
∥∥2
Ln̂(Sr )

≤ C4(n, λ,�, q̂) ‖h‖Lq (St ) (R − r)−2n(
β

2
+ 1)2

∥∥uβ/2+1
∥∥2
Lq̂ (SR)

.

(5.17)
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As q > n/2, n̂ > q̂ and we may set

χ := n̂

q̂
> 1, and γ := q̂(

β

2
+ 1).

Then, (5.17) becomes

‖u‖Lγχ (Sr ) ≤ (
C5(n, λ,�, q̂) ‖h‖Lq (St ) (R − r)−2nγ 2) q

q−1
1
γ ‖u‖Lγ (SR) . (5.18)

Define for each integer j ≥ 0

r j = t

2
+ t

2 j+1 , and γ j = χ j q̂ .

Setting R = r j , r = r j+1, and γ = γ j in (5.18), we get

‖u‖
Lχ j+1 q̂ (Sr j+1 )

≤
(
2C5q̂

2 ‖h‖Lq (St ) t
−2n22n( j+2)χ2 j

)χ− j /2 ‖u‖
Lχ j

(Sr j )
. (5.19)

Iterating (5.19) yields

‖u‖L∞(St/2) ≤ (
2C5q̂

2 ‖h‖Lq (St ) t
−2n)∑

j≥0 χ− j /2
2
∑

j≥0 n( j+2)χ− j
χ

∑
j≥0 jχ− j ‖u‖Lq̂ (St ) .

(5.20)

As Sϕ(x0, t) is normalized, we have from Lemma 2.8,

t−1 ≤ C6(n, λ,�). (5.21)

Finally, the W 2,1+ε estimate in Theorem 2.7 implies

‖h‖Lq (St ) ≤ C7(n)
1 + ‖b‖2L∞(St )

+ ‖B‖2L∞(St )

λ

∥∥D2ϕ
∥∥
Lq (St )

+ ‖ f ‖Lq (St )

k
+ C7(n)

∥∥D2ϕ
∥∥n−1
Lq(n−1)(St )

≤ C8(n, ε∗, r , λ,�, ‖b‖L∞(St ) , ‖B‖L∞(St ) ,
∥∥D2ϕ

∥∥
L1+ε∗ (St )

)

≤ C9(n, ε∗, r , λ,�, ‖b‖L∞(St ) , ‖B‖L∞(St )).

(5.22)

The conclusion of the lemma follows from (5.20)–(5.22). 
�
Now, we rescale (1.1) as we did in the proof of Proposition 3.5, and apply the result in

Lemma 5.1. Using the estimates from the proof of Theorem 1.1, we then argue as in Le [31,
Theorem 15.4] to obtain the following interior estimates in general sections.

Lemma 5.2 (Interior estimate in general section) Let ϕ ∈ C3(�) be a convex function
satisfying (1.3). Suppose F,b,B ∈ W 1,n

loc (�;Rn) ∩ L∞
loc(�;Rn), f ∈ Ln

loc(�), and n/2 <

r ≤ n. Assume that Sϕ(x0, 2h) � � and u ∈ W 1,2(Sϕ(x0, h)) is a nonnegative solution to
(1.1) in Sϕ(x0, 2h). Further assume that

1. either n = 2, or
2. n ≥ 3 and ε∗(n, λ,�) + 1 >

n(n−1)
2 where ε∗ is from Theorem 2.7.

Then,

sup
Sϕ(x0,h/2)

u ≤ C(h− n
4 ‖u‖L2(Sϕ(x0,h)) + h1−

n
2 ‖F‖L∞(Sϕ(x0,h)) + h1−

n
2r ‖ f ‖Lr (Sϕ(x0,h)))

(5.23)
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where

C = C(n, λ,�, r , ε∗, ‖b‖L∞(Sϕ(x0,h)) , ‖B‖L∞(Sϕ(x0,h)) , h, diam(Sϕ(x, 2h))) > 0.

Proof Werescale S = Sϕ(x0, h) as in the proof ofTheorem1.1, so that B1 ⊂ T−1Sϕ(x0, h) ⊂
Bn . We will use C̃ and the numbered constants Cn to denote the same constants from the
proof of Theorem 1.1 throughout the proof of this lemma.

For h̃ := (det Ah)
−2/nh, we have the rescaled equation (3.47) in S̃ = Sϕ̃ (y0, h̃). Applying

Lemma 5.1 to ũ, we get

sup
Sϕ̃ (y0 ,̃h/2)

ũ ≤ D1(‖ũ‖Lq∗(Sϕ̃ (y0 ,̃h)) + ∥∥F̃∥∥
L∞(Sϕ̃ (y0 ,̃h))

+ ∥∥ f̃
∥∥
Lr (Sϕ̃ (y0 ,̃h))

), (5.24)

where D1 > 0 depends on n, λ, �, r , ε∗,
∥∥̃b∥∥

L∞(S̃)
, and

∥∥B̃∥∥
L∞(S̃)

.
Using the expression for C2 in (4.5) and C3 in (4.4), we use the estimates (4.6) to estimate

the norms of the rescaled functions:

∥∥̃b∥∥
L∞(Sϕ̃ (y0 ,̃h))

≤ (
C1h

n/2)2/n (C̃h−n/2) ‖b‖L∞(Sϕ(x0,h))

= C2/n
1 C̃h1−n/2 ‖b‖L∞(Sϕ(x0,h)) ,∥∥B̃∥∥

L∞(Sϕ̃ (y0 ,̃h))
≤ C2/n

1 C̃h1−n/2 ‖B‖L∞(Sϕ(x0,h)) ,∥∥F̃∥∥
L∞(Sϕ̃ (y0 ,̃h))

≤ C2/n
1 C̃h1−n/2 ‖F‖L∞(Sϕ(x0,h)) , and∥∥ f̃

∥∥
Lr (Sϕ̃ (y0 ,̃h))

= (C1h
n/2)2/n−1/r ‖ f ‖Lr (Sϕ(x0,h))

= C2/n−1/r
1 h1−n/2r ‖ f ‖Lr (Sϕ(x0,h)) .

(5.25)

We also have (see [31, Lemma 15.2(iii)])

‖ũ‖Lq∗
(Sϕ̃ (y0 ,̃h)) ≤ D2(n, λ,�, q∗)h−n/2q∗ ‖u‖Lq∗

(Sϕ(x0,h)) (5.26)

for q∗ = q∗(ε∗, n, r), and

sup
Sϕ̃ (y0 ,̃h/2)

ũ = sup
Sϕ(x0,h/2)

u. (5.27)

The L∞ norms of b̃ and B̃ are under control from (5.25). Hence, from (5.24)–(5.27) we
have,

sup
Sϕ(x0,h/2)

u≤D3(h
− n

2q∗ ‖u‖Lq∗
(Sϕ(x0,h))+h1−

n
2 ‖F‖L∞(Sϕ(x0,h))+h1−

n
2r ‖ f ‖Lr (Sϕ(x0,h))),

(5.28)

where D3 depends on n, λ, �, r , ε∗, ‖(b,B)‖L∞(Sϕ(x0,h)), h, and diam(Sϕ(x0, 2h)). We can
now use (5.28) to argue as in Le [31, pp.519–521] (see also Han-Lin [21, pp.75–76]) to obtain
(5.23). This gives the conclusion of the Lemma. 
�

Remark 5.3 In fact, following the arguments cited above, we can obtain (5.23) with the L2

norm of u replaced by the L p norm of u, for any p > 0.
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6 Interior Hölder estimates

In this section, we prove the interior Hölder estimates in Corollary 1.2 and Theorem 1.3.
We start by combining the Harnack inequality in Theorem 1.1 and the global estimate in
Proposition 3.5 to prove Corollary 1.2.

Proof of Corollary 1.2 Let osc(g, E) := supE g−infE g. It is sufficient (see [31, pp.523–524])
to prove the oscillation estimate

osc(u, Sϕ(x0, h)) ≤ C0

(
‖u‖L∞(Sϕ(x0,h0)) + ‖F‖L∞(Sϕ(x0,2h0)) + ‖ f ‖Lr (Sϕ(x0,2h0))

)
hγ0

(6.1)

for all h ≤ h0, where the positive constants C0 and γ0 have the same dependency as C and
γ stated in the Corollary.

As in Le [26, pp.284–285], we break up the solution u = v + w in Sϕ(x0, h), h ≤ h0,
where v,w ∈ W 2,n(Sϕ(x0, h)) are solutions to

{
− div(�Dv + vB) + b · Dv = f − divF in Sϕ(x0, h),

v = 0 on ∂Sϕ(x0, h),

and {
− div(�Dw + wB) + b · Dw = 0 in Sϕ(x0, h),

w = u on ∂Sϕ(x0, h).

Such u and v exist as a consequence of [20, Theorem 9.15].
Wenowrescale Sϕ(x0, 2h0) as in theproof ofTheorem1.1, so that B1 ⊂ T−1Sϕ(x0, 2h0) ⊂

Bn for T x = A2h0 x + b2h0 . We define the rescaled functions using (3.45), and set
ṽ(x) := v(T x). Applying the global estimate in Proposition 3.5 to ṽ, we get

‖̃v‖L∞(Sϕ̃ (y0 ,̃h)) ≤ C̃1

(∥∥F̃∥∥
L∞(Sϕ̃ (y0 ,̃h))

+ ∥∥ f̃
∥∥
Lr (Sϕ̃ (y0 ,̃h))

)
h̃γ̃1 , (6.2)

where

h̃ := (det A2h0)
−2/nh,

C̃1 = C̃1

(
n, λ,�, r , ε∗,

∥∥B̃∥∥
L∞(Sϕ̃ (y0 ,̃h))

,
∥∥̃b∥∥

L∞(Sϕ̃ (y0 ,̃h))

)
, and

γ1 = γ1(n, λ,�, r) > 0.

The L∞ norms of F̃, b̃, B̃, and the Lr norm of f̃ are under control as in (5.25). Also, by
(4.4),

h̃ ≤ C(n, λ,�, h0)h.

Hence, from (6.2), we get

osc(v, Sϕ(x0, h/2)) ≤ 2 ‖v‖L∞(Sϕ(x0,h)) ≤ C1(‖F‖L∞(Sϕ(x0,2h0)) + ‖ f ‖Lr (Sϕ(x0,2h0)))h
γ1 ,

(6.3)

where

C1 = C1(n, λ,�, r , ε∗, ‖b‖L∞(Sϕ(x0,2h0)) , ‖B‖L∞(Sϕ(x0,2h0)) , h0, diam(Sϕ(x0, 2h0))).
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We now estimate the oscillation of w. Define

M(t) := sup
Sϕ(x0,t)

w and m(t) := inf
Sϕ(x0,t)

w,

and set

w1(x) := w(x) − m(h) and w2(x) := M(h) − w(x).

Then, w1 and w2 are nonnegative solutions to

− div(�Dw1 + w1B) + b · Dw1 = m(h) divB, and

− div(�Dw2 + w2B) + b · Dw2 = −M(h) divB

in Sϕ(x0, h). Therefore, applying the Harnack inequality in Theorem 1.1 to w1, w2 gives

M(h/2) − m(h) ≤ C2(m(h/2) − m(h) + ‖m(h) divB‖Ln(Sϕ(x0,h0)) h
γ2), and

M(h) − m(h/2) ≤ C2(M(h) − M(h/2) + ‖M(h) divB‖Ln(Sϕ(x0,h0)) h
γ2),

(6.4)

where

C2=C2

(
n, λ, �, ε∗, ‖(b,B)‖L∞(Sϕ(x0,2h0)) , ‖divB‖Ln(Sϕ(x0,2h0)) , h0, diam(Sϕ(x0, 2h0))

)
,

and

γ2 = γ2(n, λ,�) > 0.

Note that w satisfies a nondivergence form equation in Sϕ(x0, h). That is,

−�i j Di jw + (b − B) · Dw − (divB)w = 0.

As divB ≤ 0, we may apply the maximum principle [20, Theorem 9.1] using the non-
divergence form equation to conclude that w takes extreme values on ∂S. As w = u on
∂S,

|M(h)|, |m(h)| ≤ ‖u‖L∞(Sϕ(x0,h)) .

Therefore, as h ≤ h0, we have

‖m(h) divB‖Ln(Sϕ(x0,h0)) + ‖M(h) divB‖Ln(Sϕ(x0,h0))

≤ 2 ‖u‖L∞(Sϕ(x0,h0)) ‖divB‖Ln(Sϕ(x0,2h0)) .

Hence, adding the two inequalities in (6.4), we get

(1 + C2)(M(h/2) − m(h/2))

≤ (C2 − 1)(M(h) − m(h)) + 2C2 ‖divB‖Ln(Sϕ(x0,2h0)) ‖u‖L∞(Sϕ(x0,h0)) h
γ2 .

Replacing C2 by C2 + 2, we may assume C2 > 1. Setting β := C2−1
C2+1 ∈ (0, 1) and

C3 := 2C2 ‖divB‖Ln(Sϕ(x0,2h0))

1 + C2
,

we have

osc(w, Sϕ(x0, h/2)) ≤ β osc(w, Sϕ(x0, h)) + C3 ‖u‖L∞(Sϕ(x0,h0)) h
γ2 . (6.5)

From the maximum principle, we also have

osc(w, Sϕ(x0, h)) = osc(w, ∂Sϕ(x0, h)) = osc(u, ∂Sϕ(x0, h)) ≤ osc(u, Sϕ(x0, h)).

(6.6)
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Recalling u = v + w, from (6.3), (6.5), and (6.6) we get

osc(u, Sϕ(x0, h/2)) ≤ osc(w, Sϕ(x0, h/2)) + osc(v, Sϕ(x0, h/2))

≤ β osc(u, Sϕ(x0, h)) + C3 ‖u‖L∞(Sϕ(x0,h0)) h
γ2

+ C1(‖F‖L∞(Sϕ(x0,2h0)) + ‖ f ‖Lr (Sϕ(x0,2h0)))h
γ1 .

Therefore, by a standard argument (see [20, Lemma 8.23]), for all h ≤ h0 we get

osc(u, Sϕ(x0, h))

≤ C4

(
h

h0

)γ3 (
osc(u, Sϕ(x0, h0)) + C3 ‖u‖L∞(Sϕ(x0,h0)) h

γ2
0

+ C1(‖F‖L∞(Sϕ(x0,2h0)) + ‖ f ‖Lr (Sϕ(x0,2h0)))h
γ1
0

)

≤ C4

(
h

h0

)γ3 (
(2 + C3h

γ2
0 ) ‖u‖L∞(Sϕ(x0,h0))

+C1(‖F‖L∞(Sϕ(x0,2h0)) + ‖ f ‖Lr (Sϕ(x0,2h0)))h
γ1
0

)
,

where C4 = C4(β) > 0 and γ3 = γ3(β) > 0. This gives the desired oscillation estimate
(6.1). The proof of the Theorem is complete. 
�

Now, we combine the interior estimate in Lemma 5.2 with the Hölder estimate in Corol-
lary 1.2 to prove Theorem 1.3.

Proof of Theorem 1.3 From Corollary 1.2, for all x, y ∈ Sϕ(x0, h0), we have

|u(x) − u(y)| ≤ C1

(
‖F‖L∞(Sϕ(x0,2h0)) + ‖ f ‖Lr (Sϕ(x0,2h0)) + ‖u‖L∞(Sϕ(x0,h0))

)
|x − y|γ ,

(6.7)

whereC1 dependsonn,λ,�, r , ε∗,‖b‖L∞(Sϕ(x0,2h0)),‖B‖L∞(Sϕ(x0,2h0)),‖divB‖Ln(Sϕ(x0,2h0)),
h0, anddiam(Sϕ(x0, 4h0)), andγ dependsonn,λ,�, ε∗,‖b‖L∞(Sϕ(x0,2h0)),‖B‖L∞(Sϕ(x0,2h0)),‖divB‖Ln(Sϕ(x0,2h0)), h0, and diam(Sϕ(x0, 4h0)).

As

Du+ = Duχ{u>0} and Du− = −Duχ{u<0},

u+ and u− are solutions to

− div(�Du+ + u+B) + b · Du+ = f χ{u>0} − div(Fχ{u>0}),
− div(�Du− + u−B) + b · Du− = − f χ{u<0} + div(Fχ{u<0}).

Therefore, we may apply Lemma 5.2 to u+ and u− to get

‖u‖L∞(Sϕ(x0,h0)) ≤ C2(h
− n

4
0 ‖u‖L2(Sϕ(x0,2h0)) + h

1− n
2

0 ‖F‖L∞(Sϕ(x0,2h0))

+ h
1− n

2r
0 ‖ f ‖Lr (Sϕ(x0,2h0))),

(6.8)

where

C2 = C2(n, λ,�, r , ε∗, ‖b‖L∞(Sϕ(x0,2h0)) , ‖B‖L∞(Sϕ(x0,2h0)) , h0, diam(Sϕ(x0, 4h0))) > 0.

Combining (6.7) and (6.8) completes the proof of the Theorem. 
�
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